Statique du point et statique du solide
Les simplifications de la mécanique du point reposent sur le fait que le point est invariant par rotation, et que toutes les forces sont appliquées au point matériel. Alors les forces suffisent à modifier sa position. Pour les solides, constitués d'une infinité de points matériels, les déplacements possibles, appelés aussi degrés de liberté, sont de deux natures: translations (3 directions principales) et rotations (autour de ces trois directions). Alors que les translations ne peuvent être provoquées que par des forces, les rotations sont générées par des moments de ces forces, ou autres couples de force.
Quand l'équilibre d'un point ne nécessite l'établissement que de 3 relations algébriques (équation vectorielle des forces à 3 dimensions), celui du solide demande alors la considération de 3 équations supplémentaires (équation vectorielle des moments).
Le principe fondamental de la statique se compose alors :
- du théorème de la résultante (somme des forces nulle).
- du théorème du moment (somme des moments nulle).
L'étude de l'équilibre d'un solide nécessite toujours la considération de ces 2 théorèmes, même si certains cas simples, traités en mécanique du point, semblent être résolus avec une seule des 2 parties. En règle générale, il n'est pas possible de traiter séparément les deux aspects (forces et moments): il s'agit bien d'un problème complexe à 6 dimensions.
D'autre part, la statique du solide, et plus généralement des mécanismes, prend en considération les efforts transmissibles dans une liaison mécanique. L'étude de ces liaisons donne a priori et sans équivoque certaines caractéristiques des forces et moments des actions entre solides. L'objectif étant la détermination complète de tous ces efforts inconnus.
L'objectif de la mécanique est la détermination de tous les efforts appliqués à un système, à partir de la connaissance d'une partie d'entre eux. En ce qui concerne les mécanismes, il s'agit en plus de connaître les charges subies dans toutes les liaisons. Le mécanicien n'a a priori aucune information sur la disposition réelle de ces efforts. Cependant, pour chaque liaison, dont on connait le comportement, certaines composantes (forces ou moments) sont nulles ou au contraire transmissibles. C'est ainsi qu'on peut dire que la réaction d'un support plan sur un pavé est une force obligatoirement perpendiculaire au contact s'il n'y a pas de frottement. Lorsque l'étude est terminée, on peut décrire chaque effort de liaison qui devient alors l'effort effectivement transmis.

Comments
Post a Comment